Update for Produced Neutrino Energy Spectra

Emily Maher

05 November 2004

The energy spectra of the produced neutrinos are necessary for the cross section measurement. I produced the spectra for ν_{τ} , ν_{μ} , and ν_{e} , which were produced with the E872 MC.

In order to see if these distributions make sense, it was suggested to look at other experiments that might have made a similar measurement. There are three experiments that I have explored.

- BEBC 20 200 GeV I found interacted energy spectrum, but not the produced neutrino energy spectrum.
- CHARM 400 GeV Again I found the interacted neutrino energy spectrum but not the produced spectrum.

- E613 400 GeV Again I found the interacted energy spectrum, but they have fit their data and included the inputs they used. I can use this information to compare to my spectra. The following two figure show their data and the fits of $\frac{dN}{dE_{\nu}}$ vs. E_{ν} and $\frac{dN}{dp_t^2}$ vs. p_t for prompt neutrinos.
 - This data is from M.E. Duffy et. al.,
 Phys. Rev. D:38:2032-2055(1988).

FIG. 20. Energy distribution dN/dE_{ν} of the measured prompt $\nu_{\mu} + \bar{\nu}_{\mu} + \nu_{e} + \bar{\nu}_{e}$ event rate per 10^{16} protons. The solid line represents the best fit to a $D\bar{D}$ production model (including detector acceptance) with n=3.2 and b=1.5. The dotted (dashed) line shows the spectra generated for n=5 (n=2).

FIG. 21. Transverse-momentum distribution dN/dp_{\perp} of the measured prompt $\nu_{\mu} + \overline{\nu}_{\mu} + \nu_{e} + \overline{\nu}_{e}$ event rate per 10^{16} protons. The solid line shows the best fit to a $D\overline{D}$ production model (including detector acceptance) with n=3.2 and b=1.5.

Future Work

- I will run our Monte Carlo with 400 GeV protons.
- I will fit my data and compare to the fit they have. If everything is correct, these fits should match.